Relationship between mercury in kidney, blood, and urine in environmentally exposed individuals, and implications for biomonitoring.
Methods
Kidney cortex biopsies and urine and blood samples were collected from 109 living kidney donors. Total Hg concentrations were determined and the relationships between K-Hg, U-Hg, P-Hg, and B-Hg were investigated in regression models. The half-time of K-Hg was estimated from the elimination constant.
Results
There were strong associations between K-Hg and all measures of U-Hg and P-Hg (rp = 0.65–0.84, p < 0.001), while the association with B-Hg was weaker (rp = 0.29, p = 0.002). Mean ratios between K-Hg (in μg/g) and U-Hg/24h (in μg) and B-Hg (in μg/L) were 0.22 and 0.19 respectively. Estimates of the biological half-time varied between 30 and 92 days, with significantly slower elimination in women. Adjusting overnight urine samples for dilution using urinary creatinine resulted in less bias in relation to K-Hg or U-Hg/24h, compared with other adjustment techniques.
Conclusions
The relationship between K-Hg and U-Hg is approximately linear. K-Hg can be estimated using U-Hg and gender. Women have longer half-time of Hg in kidney compared to men. Adjusting overnight urine samples for creatinine concentration resulted in less bias.”