adam

About Rani A, Rockne KJ, Drummond J, Al-Hinai M, Ranjan R.

This author has not yet filled in any details.
So far Rani A, Rockne KJ, Drummond J, Al-Hinai M, Ranjan R. has created 996 blog entries.

Geochemical influences and mercury methylation of a dental wastewater microbiome.

The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation.

By |2018-07-30T16:11:58+00:00January 1st, 2015|Mercury|

The extent of mercury (Hg) exposure among Saudi mothers and their respective infants.

A total of 1016 healthy Saudi mothers and their respective infants (aged 3–12 months) were recruited from 57 Primary Health Care Centers (PHCCs) in Riyadh, Saudi Arabia, to evaluate the extent of mercury (Hg) exposure and predict its sources in the healthy Saudi population. Total Hg levels were measured in maternal urine, breast milk, blood, and hair and in the infants’ urine and hair. Only 1.9 % of the mothers had urinary Hg (UHg) >10 μg/l, the limit for asymptomatic adults recommended by the World Health Organization, but the median (0.99 μg/l) was higher than in other countries. Also, 49.3 % of the mothers had UHg >1 μg/l, the German reference value for adults. Median infant UHg was 0.729 μg/l, and 77 and 93 % of the infants had levels higher than 0.4 and 0.1 μg/l, the reference values of the Centers for Disease Control and Prevention and for Germany, respectively. The median Hg level in breast milk was 0.884 μg/l. Even though 43.2 % of the milk samples were above the background level for Hg in human milk (1 μg/l), our results were lower than those reported from other countries. Median maternal total Hg in blood was 0.637 μg/l, and only 0.4 and 6.9 % of samples were higher than the Hg reference levels of 5.8 μg/l of the Environmental Protection Agency (EPA) and of 2 μg/l for Germany, respectively. Total Hg levels in hair (HHg) varied widely among mothers and infants, but only 3.9 % of the mothers and 2.8 % of the infants had HHg >1 μg/g (the EPA reference level). Median HHg values were 0.117 μg/g dry weight in mothers and 0.1 μg/g dry weight in infants; both were lower than in other countries. The Hg levels in mothers and their respective infants were relatively low, but our results were consistent with other studies indicating that dental amalgam fillings and fish consumption were the main predictors of maternal Hg exposure. Among the several biomarkers of Hg exposure, Hg levels in maternal hair and urine were the strongest predictors of infant exposure. The lack of an association between Hg in breast milk and Hg in infant urine and hair suggested that the infants were exposed to Hg predominately during pregnancy rather than during breastfeeding. We expect that our data can serve as a baseline for further biomonitoring and follow-up studies, particularly of the long-term impact of Hg on childhood neurodevelopment.

Gadolinium-based contrast agent accumulation and toxicity: an update.

In current practice, gadolinium-based contrast agents have been considered safe when used at clinically recommended doses in patients without severe renal insufficiency. The causal relationship between gadolinium-based contrast agents and nephrogenic systemic fibrosis in patients with renal insufficiency resulted in new policies regarding the administration of these agents. After an effective screening of patients with renal disease by performing either unenhanced or reduced-dose-enhanced studies in these patients and by using the most stable contrast agents, nephrogenic systemic fibrosis has been largely eliminated since 2009. Evidence of in vivo gadolinium deposition in bone tissue in patients with normal renal function is well-established, but recent literature showing that gadolinium might also deposit in the brain in patients with intact blood-brain barriers caught many individuals in the imaging community by surprise. The purpose of this review was to summarize the literature on gadolinium-based contrast agents, tying together information on agent stability and animal and human studies, and to emphasize that low-stability agents are the ones most often associated with brain deposition.

Continuing the quest for autoimmunity due to oral metal exposure.

Results: Skin hypersensitivity, as seen mainly for Ni and/or Pd, was not positively associated with autoimmune parameters. In contrast, metal hypersensitive individuals showed an extremely low frequency of thyroid autoantibodies (3% vs 20% in non-hypersensitive controls). Next, the relation between metal exposure and autoimmunity was evaluated in individuals >35 years (n = 58), since from that age on metal exposure had plateaued and was not correlated with age. In this subgroup, oral Ni exposure was associated (p < 0.01) with self-reported AID, irrespective of autoantibody levels. These unexpected findings warrant further confirmation in a larger test group. Of note, oral Pd, Au or Hg contacts were not associated with any of the clinical or serological autoimmune phenomena tested.

Conclusion: The results of this study support the view that development of metal contact allergies may prevent autoimmune activation, and, second, that oral exposure to Pd, Au or Hg does not facilitate the development of AID.

Fluoride gels for preventing dental caries in children and adolescents.

The conclusions of this updated review remain the same as those when it was first published. There is moderate quality evidence of a large caries-inhibiting effect of fluoride gel in the permanent dentition. Information concerning the caries-preventive effect of fluoride gel on the primary dentition, which also shows a large effect, is based on low quality evidence from only three placebo-controlled trials. There is little information on adverse effects or on acceptability of treatment. Future trials should include assessment of potential adverse effects.

By |2018-07-26T15:48:51+00:00January 1st, 2015|Fluoride|

Dental metal-induced innate reactivity in keratinocytes.

Gold, nickel, copper and mercury, i.e. four metals frequently used in dental applications, were explored for their capacity to induce innate immune activation in keratinocytes (KC). Due to their anatomical location the latter epithelial cells are key in primary local irritative responses of skin and mucosa. Fresh foreskin-derived keratinocytes and skin and gingiva KC cell lines were studied for IL-8 release as a most sensitive parameter for NF-kB activation. First, we verified that viral-defense mediating TLR3 is a key innate immune receptor in both skin- and mucosa derived keratinocytes. Second, we found that, in line with our earlier finding that ionized gold can mimic viral dsRNA in triggering TLR3, gold is very effective in KC activation. It would appear that epithelial TLR3 can play a key role in both skin- and mucosa localized irritation reactivities to gold. Subsequently we found that not only gold, but also nickel, copper and mercury salts can activate innate immune reactivity in keratinocytes, although the pathways involved remain unclear. Although current alloys have been optimized for minimal leakage of metal ions, secondary factors such as mechanical friction and acidity may still facilitate such leakage. Subsequently, these metal ions may create local irritation, itching and swelling by triggering innate immune reactions, potentially also facilitating the development of metal specific adaptive immunity.

Patients’ experiences of changes in health complaints before, during, and after removal of dental amalgam.

In this article, we explore how patients with health complaints attributed to dental amalgam experienced and gave meaning to changes in health complaints before, during, and after removal of all amalgam fillings. We conducted semistructured qualitative interviews with 12 participants from the treatment group in a Norwegian amalgam removal trial. Interviews took place within a couple months of the final follow-up 5 years after amalgam removal. Using the NVivo9 software, we conducted an explorative and reflective thematic analysis and identified the following themes: Something is not working: betrayed by the body, You are out there on your own, Not being sure of the importance of amalgam removal, The relief experienced after amalgam removal, and To accept, to give up, or to continue the search. We discuss the findings in the context of patients’ assigning meaning to illness experiences.

The dormant blood microbiome in chronic, inflammatory diseases.

Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines.

By |2019-06-08T02:16:46+00:00January 1st, 2015|Other|

Application of dental nanomaterials: potential toxicity to the central nervous system.

Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

By |2020-01-16T02:13:42+00:00January 1st, 2015|Other|

The association between rheumatoid arthritis and periodontitis

The relationship between rheumatoid arthritis and poor oral health has been recognised for many decades. The association between periodontal infection and the risk of developing RA has been the subject of epidemiological, clinical and basic science research in recent times. Converging and reproducible evidence now makes a clear case for the role of specific periodontal infective pathogens in initiating, amplifying and perpetuating rheumatoid arthritis. The unique enzymatic properties of the periodontal pathogen Porphyromonas gingivalis and its contribution to the burden of citrullinated peptides is now well established. The impact of localized infection such as periodontitis in shaping specific anti-citrullinated peptide immune responses highlights a key area for treatment, prevention and risk assessment in rheumatoid arthritis.

By |2019-06-08T02:00:00+00:00January 1st, 2015|Periodontal Disease|
Go to Top