iaomtlibrary

About Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL.

This author has not yet filled in any details.
So far Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL. has created 1044 blog entries.

Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress.

“Currently, mercury has been identified as a risk factor of cardiovascular diseases among humans. Here, the authors tested the hypothesis that mercury modulates the activity of the endothelial lipid signaling enzyme, phospholipase D (PLD), which is an important player in the endothelial cell (EC) barrier functions. Monolayers of bovine pulmonary artery ECs (BPAECs) in culture, following labeling of membrane phospholipids with [32P]orthophosphate, were exposed to mercuric chloride (inorganic form), methylmercury chloride (environmental form), and thimerosal (pharmaceutical form), and the formation of phosphatidylbutanol as an index of PLD activity was determined by thin-layer chromatography and liquid scintillation counting. All three forms of mercury significantly activated PLD in BPAECs in a dose-dependent (0 to 50 microM) and time-dependent (0 to 60 min) fashion. Metal chelators significantly attenuated mercury-induced PLD activation, suggesting that cellular mercury-ligand interaction(s) is required for the enzyme activation and that chelators are suitable blockers for mercury-induced PLD activation. Sulfhydryl (thiol-protective) agents and antioxidants also significantly attenuated the mercury-induced PLD activation in BPAECs. Enhanced reactive oxygen species generation, as an index of oxidative stress, was observed in BPAECs treated with methylmercury that was attenuated by antioxidants. All the three different forms of mercury significantly induced the decrease of levels of total cellular thiols. For the first time, this study revealed that mercury induced the activation of PLD in the vascular ECs wherein cellular thiols and oxidative stress acted as signal mediators for the enzyme activation. The results underscore the importance of PLD signaling in mercury-induced endothelial dysfunctions ultimately leading to cardiovascular diseases.”

Occupational exposure to mercury from amalgams during pregnancy.

“In their investigation of chemical exposure in dental personnel, Lindbohm et al conclude by saying that there is a weak association between exposure to chemical agents and an increased frequency of spontaneous abortion. Based on their data, the authors propose in the Policy implications section that ‘‘In general, there is no need to restrict work in dental clinics during pregnancy’’. We would like to express our concerns about their statement before these results reach public health policy.”

By |2018-05-12T19:55:47+00:00January 1st, 2007|Mercury|

Thimerosal-induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation.

“Thimerosal is a mercury-containing preservative in some vaccines. The effect of thimerosal on human gastric cancer cells is unknown. This study shows that in cultured human gastric cancer cells (SCM1), thimerosal reduced cell viability in a concentration- and time-dependent manner. Thimerosal caused apoptosis as assessed by propidium iodide-stained cells and caspase-3 activation. Although immunoblotting data revealed that thimerosal could activate the phosphorylation of extracellular signal-regulated kinase, c-Jun NH2-terminal protein kinase, and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Thimerosal also induced [Ca2+](i) increases via Ca2+ influx from the extracellular space. However, pretreatment with (bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetate)/AM, a Ca2+ chelator, to prevent thimerosal-induced [Ca2+](i) increases did not protect cells from death. The results suggest that in SCM1 cells, thimerosal caused Ca2+-independent apoptosis via phosphorylating p38 MAPK resulting in caspase-3 activation.”

Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set.

“The question of what is leading to the apparent increase in autism is of great importance. Like the link between aspirin and heart attack, even a small effect can have major health implications. If there is any link between autism and mercury, it is absolutely crucial that the first reports of the question are not falsely stating that no link occurs. We have reanalyzed the data set originally reported by Ip et al. in 2004 and have found that the original p value was in error and that a significant relation does exist between the blood levels of mercury and diagnosis of an autism spectrum disorder. Moreover, the hair sample analysis results offer some support for the idea that persons with autism may be less efficient and more variable at eliminating mercury from the blood.”

By |2018-04-17T20:24:53+00:00January 1st, 2007|Mercury|

Reduced tubulin tyrosination as an early marker of mercury toxicity in differentiating N2a cells.

“The aims of this work were to compare the effects of methyl mercury chloride and thimerosal on neurite/process outgrowth and microtubule proteins in differentiating mouse N2a neuroblastoma and rat C6 glioma cells. Exposure for 4h to sublethal concentrations of both compounds inhibited neurite outgrowth to a similar extent in both cells lines compared to controls. In the case of N2a cells, this inhibitory effect by both compounds was associated with a fall in the reactivity of western blots of cell extracts with monoclonal antibody T1A2, which recognises C-terminally tyrosinated alpha-tubulin. By contrast, reactivity with monoclonal antibody B512 (which recognises total alpha-tubulin) was unaffected at the same time point. These findings suggest that decreased tubulin tyrosination represents a neuron-specific early marker of mercury toxicity associated with impaired neurite outgrowth.”

Surface antibacterial properties of glass ionomer cements used in atraumatic restorative treatment.

“Atraumatic restorative treatment (ART) is recommended for use worldwide, not only in developing countries where resources are not readily available, but also in more industrialized countries. The antibacterial properties of restorative dental materials may improve the restorative treatment outcome. Glass ionomer cement (GIC) has been advocated as the preferred restoration material for ART. The authors evaluated the antibacterial properties of restorative materials—three GICs and a zinc oxide eugenol (ZOE)—in vitro…”

By |2018-04-17T19:42:58+00:00January 1st, 2007|Other|

Effect of fluoride ions on apatite crystal formation in rat hard tissues.

“Fluoride is widely believed to be a useful chemical substance for preventing dental caries. However, the mechanism underlying crystal perforation in the tooth enamel and the effect of fluoride on hard tissues are unclear. To clarify the mechanism of the biological action of fluoride in the mineralization process, we examined the hard tissues of rats having received water containing a relatively low fluoride level. Electron microscopy revealed that fluoride ions could interrupt the crystal nucleation process, resulting in crystal perforation in the developing tooth enamel and the presence of amorphous minerals in bone crystals. Furthermore, the results of enzymatic analyses indicated that fluoride directly interfered with the synthesis of carbonic anhydrase by the enamel-forming cells, rather than being directly involved in the crystal formation. From the results, we would like to provide a possible mechanism of crystal perforation in the enamel induced by fluoride intake. Also, we would like to suggest that regardless of its amount, fluoride intake has harmful effects on both tooth and bone formation. “

By |2018-06-25T17:48:32+00:00January 1st, 2007|Fluoride|

Mercury and Alzheimer’s disease.

“Higher mercury concentrations were found in brain regions and blood of some patients with Alzheimer’s disease (AD). Low levels of inorganic mercury were able to cause AD- typical nerve cell deteriorations in vitro and in animal experiments. Other metals like zinc, aluminum, copper, cadmium, manganese, iron, and chrome are not able to elicit all of these deteriorations in low levels, yet they aggravate the toxic effects of mercury (Hg). Main human sources for mercury are fish consumption (Methyl-Hg) and dental amalgam (Hg vapour). Regular fish consumption reduces the risk of development of AD. Amalgam consists of approx. 50 % of elementary mercury which is constantly being vaporized and absorbed by the organism. Mercury levels in brain tissues are 2 – 10 fold higher in individuals with dental amalgam. Persons showing a genetically determined subgroup of transportation protein for fats (apolipoprotein E4) have an increased AD risk. Apoliprotein E (APO E) is found in high concentrations in the central nervous system. The increased AD risk through APO E4 might be caused by its reduced ability to bind heavy metals. Latest therapeutic approaches to the treatment of Alzheimer disease embrace pharmaceuticals which remove or bind metals from the brain. Preliminary success has been documented with chelation of synergistic toxic metals (Fe, Al, Zn, Cu) and therefore also Hg. The available data does not answer the question, whether mercury is a relevant risk factor in AD distinctively. In sum, the findings from epidemiological and demographical studies, the frequency of amalgam application in industrialized countries, clinical studies, experimental studies and the dental state of Alzheimer patients in comparison to controls suggest a decisive role for inorganic mercury in the etiology of Alzheimer’s disease. Other factors currently discussed as causes (e. g. other metals, inflammations, dietetic factors, vitamin deficiency, oxidative distress, and metabolic impairments) may act as co-factors.”

By |2018-06-28T20:09:16+00:00January 1st, 2007|Mercury|

Inorganic: the other mercury.

“There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.”

By |2018-07-05T18:52:10+00:00January 1st, 2007|Mercury|
Go to Top