iaomtlibrary

About Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, Gatti A, Severi G.

This author has not yet filled in any details.
So far Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, Gatti A, Severi G. has created 1044 blog entries.

Dental amalgam and mercury levels in autopsy tissues: food for thought.

“Eighteen cadavers from routine autopsy casework were subject to a study of tissue levels of total mercury in brain, thyroid, and kidney samples by atomic absorption. On these same cadavers, all dental amalgam fillings (the most important source of inorganic mercury exposure in the general population, according to the World Health Organization (WHO) were charted. Total mercury levels were significantly higher in subjects with a greater number of occlusal amalgam surfaces (>12) compared with those with fewer occlusal amalgams (0-3) in all types of tissue (all P < or = 0.04). Mercury levels were significantly higher in brain tissues compared with thyroid and kidney tissues in subjects with more than 12 occlusal amalgam fillings (all P < or = 0.01) but not in subjects with 3 or less occlusal amalgams (all P > or = 0.07).”

The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans.

We previously described a polymorphism in exon 4 of the gene encoding the heme biosynthetic pathway enzyme, coproporphyrinogen oxidase (CPOX4), which significantly modifies the effect of mercury exposure on urinary porphyrin excretion in humans. Here, we examined potential consequences of this polymorphism (“CPOX4″) on performance within neurobehavioral domains, symptoms, and mood that are known to be affected by elemental mercury (Hg degrees ) exposure in human subjects. A behavioral test battery was administered on the day of urine and buccal cell collections for 194 male dentists (DDs) and 233 female dental assistants (DAs) occupationally exposed to Hg degrees for an average of 19 and 10 years, respectively. Subjects had no history of health disorders and were employed for a minimum of 5 years in the dental profession. Respective mean urinary mercury (HgU) levels in DDs and DAs were 3.32 (4.87) microg/l and 1.98 (2.29) microg/l. Corresponding indices of chronic occupational Hg degrees exposure, weighted for historical exposure, were 27.1 (20.6) and 15.2 (12.3). The frequencies of the homogygous common (A/A), heterozygous (A/C), and homozygous polymorphic (C/C) genotypes were 75%, 23% and 2% for DDs and 73%, 25%, and 2% for DAs, respectively. DDs and DAs were evaluated separately. Regression analyses controlled for age, premorbid intelligence, alcohol consumption, and education. Statistically significant associations with HgU (p<0.05) were found for nine measures among DDs (BEES Digit SpanForward and Backward, WMS-R Visual ReproductionN Correct, BEES Symbol DigitRate, BEES Finger TappingDom/Non-dom, and Alternate Partialed, Hand SteadinessFactor1, and BEES Tracking), and eight measures among DAs (BEES Digit SpanForward, BEES Symbol DigitRate, BEES Pattern Discrimination Rate, BEES Trailmaking B, BEES Finger TappingDom/Non-dom, and Alternate Partialed, Hand SteadinessFactor1, and Vibration SensitivityHits). CPOX4 status was associated with four measures in DDs (BEES Spatial SpanForward, BEES Pattern MemoryN Correct, BEES Symbol DigitRate, and BEES VigilanceHit) and five measures in DAs (BEES Digit SpanForward, WMS-R Visual ReproductionsN Correct, BEES Symbol DigitRate, BEES Simple and Choice Reaction TimeMove. Both groups experienced an additive effect (no interaction term) for HgU and the CPOX4 polymorphisms on the DigitRate whereas DAs also had additive effects for BEES Digit SpanForward and for Beck’s Depression factor ‘Worthlessness’. These exploratory findings suggest that the CPOX4 polymorphism may affect susceptibility for specific neurobehavioral functions associated with mercury exposure in human subjects.”

Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting (1994-2006).

“In a group of 465 patients diagnosed as having chronic mercury toxicity (CMT), 32.3% had severe fatigue, 88.8% had memory loss, and 27.5% had depression. A significant correlation was found between CMT and the Apo-lipoprotein E4 genotype (p=0.001). An investigation into an additional 864 consecutively seen general practice patients, resulted in 30.3% having evidence consistent with CMT, and once again a significant correlation was found with the APO-E4 genotype (p=0.001). Removal of amalgam mercury fillings when combined with appropriate treatment resulted in a significant symptom reduction (p<0.001) to levels reported by healthy subjects.”

By |2018-07-11T18:43:11+00:00January 1st, 2006|Mercury|

Neurobehavioral effects of dental amalgam in children: a randomized clinical trial.

“In this study, children who received dental restorative treatment with amalgam did not, on average, have statistically significant differences in neurobehavioral assessments or in nerve conduction velocity when compared with children who received resin composite materials without amalgam. These findings, combined with the trend of higher treatment need later among those receiving composite, suggest that amalgam should remain a viable dental restorative option for children.”

Thimerosal induces oxidative stress in HeLa S epithelial cells.

“Thimerosal is one of the most widely used preservatives and is found in a variety of biological products, including vaccines, contact lens cleaning solutions, and cosmetics. It has been reported to have harmful effects on epithelial tissues, such as causing conjunctivitis or contact dermatitis. However, the molecular mechanism of its toxicity has not been characterized using epithelial tissues. In the present study, we report that reactive oxygen species play a key role in thimerosal-induced cytotoxicity in HeLa S epithelial cells. Thimerosal significantly reduced HeLa S cell viability and it was associated with a decrease in intracellular glutathione levels. Flow cytometric cell cycle analysis showed a marked increase in the hypodiploidic cell population, indicating apoptosis of thimerosal-treated cells. The apoptotic cell death of epithelial cells was confirmed by observing a significant increase of caspase-3 activity in the cytosolic fraction of the treated cells. Thimerosal also induced a concentration-dependent increase of genomic DNA fragmentation, a biochemical hallmark of apoptosis. Hoechst 33342 nuclear staining demonstrated apoptotic-fragmented multinuclei in thimerosal-treated cells. All the thimerosal-mediated toxic responses observed in the present study were almost completely suppressed by pretreating cells with N-acetyl-l-cysteine, a radical scavenger. Taken together, these results suggest for the first time that epithelial cytotoxicity of thimerosal is mediated by oxidative stress.”

Influenza Vaccine: Review of effectiveness of the US immunization program, and policy considerations.

“A number of studies have reported that influenza vaccine (IV) administration has been less than optimally effective in certain subpopulations. This study examines yearly influenza death rate, yearly influenza case rate, and yearly rate of hospitalizations with influenza as the first-listed discharge diagnosis. By these measures, the yearly U.S. mass influenza vaccination campaign has been ineffective in preventing influenza in vaccine recipients. The use of antiviral drugs to treat influenza, in light of the potential for an influenza pandemic, needs further consideration.”

By |2018-04-28T20:28:03+00:00January 1st, 2006|Mercury|

Thimerosal induces apoptosis in a neuroblastoma model via the cJun N-terminal kinase pathway.

“The cJun N-terminal kinase (JNK)-signaling pathway is activated in response to a variety of stimuli, including environmental insults, and has been implicated in neuronal apoptosis. In this study, we investigated the role that the JNK pathway plays in neurotoxicity caused by thimerosal, an ethylmercury-containing preservative. SK-N-SH cells treated with thimerosal (0-10 microM) showed an increase in the phosphorylated (active) form of JNK and cJun with 5 and 10 microM thimerosal treatment at 2 and 4 h. To examine activator protein-1 (AP-1) transcription, cells were transfected with a pGL2 vector containing four AP-1 consensus sequences and then treated with thimerosal (0-2.5 microM) for 24 h. Luciferase studies showed an increase in AP-1 transcriptional activity upon thimerosal administration. To determine the components of the AP-1 complex, cells were transfected with a dominant negative to either cFos (A-Fos) or cJun (TAM67). Reporter analysis showed that TAM67, but not A-Fos, decreased AP-1 transcriptional activity, indicating a role for cJun in this pathway. To assess which components are essential to apoptosis, cells were treated with a cell-permeable JNK inhibitor II (SP600125) or transfected with TAM67, and the downstream effectors of apoptosis were analyzed. Cells pretreated with SP600125 showed decreases in activation of caspases 9 and 3, decreases in degradation of poly(ADP-ribose) polymerase (PARP), and decreased levels of proapoptotic Bim, in comparison to cells treated with thimerosal alone. However, cells transfected with TAM67 showed no changes in those same components. Taken together, these results indicate that thimerosal-induced neurotoxicity occurs through the JNK-signaling pathway, independent of cJun activation, leading ultimately to apoptotic cell death.”

Alteration of the spontaneous systemic autoimmune disease in (NZB x NZW)F1 mice by treatment with thimerosal (ethyl mercury).

“Inorganic mercury may aggravate murine systemic autoimmune diseases which are either spontaneous (genetically determined) or induced by non-genetic mechanisms. Organic mercury species, the dominating form of mercury exposure in the human population, have not been examined in this respect. Therefore, ethyl mercury in the form of thimerosal, a preservative recently debated as a possible health hazard when present in vaccines, was administered in a dose of 0.156–5 mg/L drinking water to female (NZB × NZW)F1 (ZBWF1) mice. These mice develop an age-dependent spontaneous systemic autoimmune disease with high mortality primarily due to immune-complex (IC) glomerulonephritis. Five mg thimerosal/L drinking water (295 μg Hg/kg body weight (bw)/day) for 7 weeks induced glomerular, mesangial and systemic vessel wall IC deposits and antinuclear antibodies (ANA) which were not present in the untreated controls. After 22–25 weeks, the higher doses of thimerosal had shifted the localization of the spontaneously developing renal glomerular IC deposits from the capillary wall position seen in controls to the mesangium. The altered localization was associated with less severe histological kidney damage, less proteinuria, and reduced mortality. The effect was dose-dependent, lower doses having no effect compared with the untreated controls. A different effect of thimerosal treatment was induction of renal and splenic vessel walls IC deposits. Renal vessel wall deposits occurred at a dose of 0.313–5 mg thimerosal/L (18–295 μg Hg/kg bw/day), while splenic vessel wall deposits developed also in mice given the lowest dose of thimerosal, 0.156 mg/L (9 μg Hg/kg bw/day). The latter dose is 3- and 15-fold lower than the dose of Hg required to induce vessel wall IC deposits in genetically susceptible H-2s mice by HgCl2 and thimerosal, respectively. Further studies on the exact conditions needed for induction of systemic IC deposits by low-dose organic mercurials in autoimmune-prone individuals, as well as the potential effect of these deposits on the vessel walls, are warranted.”

By |2018-05-16T23:00:58+00:00January 1st, 2006|Mercury|

In vivo effects of dental casting alloys.

“OBJECTIVE: Corrosion products of different metallic alloys used in prosthetic dentistry often cause the development of a bluish-grey pigmentation of gingiva and oral mucosa. The aim of this study was to determine the content of metals in metallic pigmentations and evaluate the immune response to metals found in the oral cavity.

MATERIAL AND METHODS:

The local tissue reactions were investigated clinically by electron microscopy and by energy dispersive x-ray microanalysis. An extensive anamnesis of the patients was recorded as well as earlier contacts with health care institutions. The immunological response to metallic components of dental alloys was evaluated in 34 patients by MELISA, a modified test for lymphocyte proliferation. In addition, cytokines in culture media were determined in 10 persons by the Human Inflammation Antibody Array.

RESULTS:

Dense particles containing metals were found in the matrix among collagen fibrils and in close proximity of the lamina basalis of the gingival epithelium. Particles were also localized intracellularly in fibroblasts, macrophages, and endothelial cells. Metallic depositions consisted predominantly of silver accompanied by selenium and sulphur. Twenty five out of 34 patients revealed high lymphocyte reactivity (positive MELISA test) to one or more metal components of dental restorations. A correlation between the positivity in MELISA test and number of dental alloys in the oral cavity was also found. Twenty MELISA positive patients suffered from serious health problems (various allergies, autoimmune diseases, Parkinson’s syndrome etc.). Nickel and inorganic mercury were the most common sensitizers in vitro. The cytokine assay revealed that mercury chloride activated predominantly TH2 lymphocytes, while nickel chloride activated mainly TH1 lymphocytes.

CONCLUSIONS:

Metallic pigmentations in the oral cavity demonstrate a corrosion process and may pose a risk in immunologically susceptible patients.”

Uncoupling of ATP-mediated calcium signaling and dysregulated interleukin-6 secretion in dendritic cells by nanomolar thimerosal.

“Dendritic cells (DCs) , a rare cell type widely distributed in the soma, are potent antigen-presenting cells that initiate primary immune responses. DCs rely on intracellular redox state and calcium (Ca2+) signals for proper development and function, but the relationship between these two signaling systems is unclear. Thimerosal (THI) is a mercurial used to preserve vaccines and consumer products, and is used experimentally to induce Ca2+ release from microsomal stores. We tested adenosine triphosphate (ATP) -mediated Ca2+ responses of DCs transiently exposed to nanomolar THI. Transcriptional and immunocytochemical analyses show that murine myeloid immature DCs (IDCs) and mature DCs (MDCs) express inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) Ca2+ channels, known targets of THI. IDCs express the RyR1 isoform in a punctate distribution that is densest near plasma membranes and within dendritic processes, whereas IP3Rs are more generally distributed. RyR1 positively and negatively regulates purinergic signaling because ryanodine (Ry) blockade a) recruited 80% more ATP responders, b) shortened ATP-mediated Ca2+ transients > 2-fold, and c) produced a delayed and persistent rise (>/= 2-fold) in baseline Ca2+. THI (100 nM, 5 min) recruited more ATP responders, shortened the ATP-mediated Ca2+ transient (>/= 1.4-fold) , and produced a delayed rise (>/= 3-fold) in the Ca2+ baseline, mimicking Ry. THI and Ry, in combination, produced additive effects leading to uncoupling of IP3R and RyR1 signals. THI altered ATP-mediated interleukin-6 secretion, initially enhancing the rate of cytokine secretion but suppressing cytokine secretion overall in DCs.DCs are exquisitely sensitive to THI, with one mechanism involving the uncoupling of positive and negative regulation of Ca2+ signals contributed by RyR1.”

By |2018-05-03T22:45:07+00:00January 1st, 2006|Mercury|
Go to Top