iaomtlibrary

About Ely JT.

This author has not yet filled in any details.
So far Ely JT. has created 1044 blog entries.

Adverse health effects related to mercury exposure from dental amalgam fillings: toxicological or psychological causes?

“BACKGROUND:

Possible adverse health effects due to mercury released by amalgam fillings have been discussed in several studies of patients who attribute various symptoms to the effects of amalgam fillings. No systematic relation of specific symptoms to increased mercury levels could be established in any of these studies. Thus, a psychosomatic aetiology of the complaints should be considered and psychological factors contributing to their aetiology should be identified.

METHODS:

A screening questionnaire was used to identify subjects who were convinced that their health had already been affected seriously by their amalgam fillings (N = 40). These amalgam sensitive subjects were compared to amalgam non-sensitive subjects (N = 43). All participants were subjected to dental, general health, toxicological and psychological examinations.

RESULTS:

The two groups did not differ with respect to the number of amalgam fillings, amalgam surfaces or mercury levels assessed in blood, urine or saliva. However, amalgam sensitive subjects had significantly higher symptom scores both in a screening instrument for medically unexplained somatic symptoms (SOMS) and in the SCL-90-R Somatization scale. Additionally, more subjects from this group (50% versus 4.7%) had severe somatization syndromes. With respect to psychological risk factors, amalgam sensitive subjects had a self-concept of being weak and unable to tolerate stress, more cognitions of environmental threat, and increased habitual anxiety. These psychological factors were significantly correlated with the number and intensity of the reported somatic symptoms.

CONCLUSIONS:

While our results do not support an organic explanation of the reported symptoms, they are well in accord with the notion of a psychological aetiology of the reported symptoms and complaints. The findings suggest that self-diagnosed ‘amalgam illness’ is a label for a general tendency toward somatization.”

Urinary mercury excretion following amalgam filling in children.

“OBJECTIVES:

Dental amalgam is the major source of inorganic mercury exposure in the general population. Dental amalgam contains approximately 50% mercury, which is a toxic element. Since children are more at risk for mercury toxicity, we aimed to study prospectively the effects of amalgam filling on urinary mercury excretion in 5- to 7-year-old children.

METHODS:

Children admitted to the Pedodontics Department with no previous amalgam filling, and in a good state of health with one or more carious posterior teeth, were selected. All fillings were placed in one session for each child using Sina (Iran) amalgam powder and Degussa (Germany) mercury, which were mixed by an automated electric amalgamator (Dentomate 3, Germany). Urinary mercury concentrations were estimated before and 9-12 days after amalgam filling by atomic absorption using the mercuric hydride system.

RESULTS:

Forty-three children (20 male, 23 female) aged 5.95+/-0.92 years and weighing 19.09+/-3.10 kg were studied. Urinary mercury concentrations before and after amalgam filling were 3.83+/-2.45 and 5.14+/-3.14 microg/L, respectively (p = 0.001). There were no statistically significant correlations between the urinary mercury concentrations and any other variables, including the number and surfaces of filled teeth, weight, age, and sex.

CONCLUSION:

Although there were highly significant increases in urinary mercury concentrations after amalgam filling, no significant correlation was found between the urinary mercury concentration and the amounts of filled amalgam. Additional investigation is required concerning the effects of mercury release from amalgam.”

By |2018-06-25T18:32:01+00:00January 1st, 2001|Mercury|

Selenium, selenoproteins and human health: a review.

“Selenium is of fundamental importance to human health. It is an essential component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defence systems, and immune function. The decline in blood selenium concentration in the UK and other European Union countries has therefore several potential public health implications, particularly in relation to the chronic disease prevalence of the Western world such as cancer and cardiovascular disease. Ten years have elapsed since recommended dietary intakes of selenium were introduced on the basis of blood glutathione peroxidase activity. Since then 30 new selenoproteins have been identified, of which 15 have been purified to allow characterisation of their biological function. The long term health implications in relation to declining selenium intakes have not yet been thoroughly examined, yet the implicit importance of selenium to human health is recognised universally. Selenium is incorporated as selenocysteine at the active site of a wide range of selenoproteins. The four glutathione peroxidase enzymes (classical GPx1, gastrointestinal GPx2, plasma GPx3, phospholipid hydroperoxide GPx4)) which represent a major class of functionally important selenoproteins, were the first to be characterised. Thioredoxin reductase (TR) is a recently identified seleno-cysteine containing enzyme which catalyzes the NADPH dependent reduction of thioredoxin and therefore plays a regulatory role in its metabolic activity. Approximately 60% of Se in plasma is incorporated in selenoprotein P which contains 10 Se atoms per molecule as selenocysteine, and may serve as a transport protein for Se. However, selenoprotein-P is also expressed in many tissues which suggests that although it may facilitate whole body Se distribution, this may not be its sole function. A second major class of selenoproteins are the iodothyronine deiodinase enzymes which catalyse the 5’5-mono-deiodination of the prohormone thyroxine (T4) to the active thyroid hormone 3,3’5-triiodothyronine (T3). Sperm capsule selenoprotein is localised in the mid-peice portion of spermatozoa where it stabilises the integrity of the sperm flagella. Se intake effects tissue concentrations of selenoprotein W which is reported to be necessary for muscle metabolism. It is of great concern that the health implications of the decline in Se status in the UK over the past two decades have not been systematically investigated. It is well recognised that dietary selenium is important for a healthy immune response. There is also evidence that Se has a protective effect against some forms of cancer; that it may enhance male fertility; decrease cardiovascular disease mortality, and regulate the inflammatory mediators in asthma. The potential influence of Se on these chronic diseases within the European population are important considerations when assessing Se requirement.”

By |2018-03-22T23:29:09+00:00January 1st, 2001|Other|

Potential health and environmental issues of mercury-contaminated amalgamators.

BACKGROUND:

Dental amalgamators may become contaminated internally with metallic mercury. This contamination may result from mercury leakage from capsules during trituration or from the long-term accrual from microscopic exterior contaminants that result from the industrial assembly process. The potential health risk to dental personnel from this contamination is unknown.

METHODS:

The authors assessed used amalgamators from the federal service inventory for the amounts of mercury vapor levels, as well as the visual presence of mercury contamination. They evaluated these amalgamators for potential mercury vapor health risk, using established National Institute for Occupational Safety and Health methods and American Conference of Governmental Industrial Hygienists standards.

RESULTS:

Ten of the 11 amalgamators assessed had measurable mercury vapor levels. Four amalgamators were found to have internal static mercury vapor levels above Occupational Safety and Health Administration ceiling limit thresholds. During a simulated worst-case clinical use protocol, the authors found that no amalgamators produced mercury vapor in the breathing space of dental personnel that exceeded established time-weighted federal mercury vapor limits.

CONCLUSIONS:

Amalgamators may be contaminated internally with metallic mercury. Although the authors detected mercury vapor from these units during aggressive, simulated clinical use, dilution factors combined with room air exchange were found to keep health risks below established federal safety thresholds.
CLINICAL IMPLICATIONS:

Dental personnel should be aware that amalgamators may be contaminated with mercury and produce minute amounts of mercury vapor. These contaminated amalgamators may require disposal as environmentally hazardous waste.”

By |2018-07-05T18:59:52+00:00January 1st, 2001|Mercury|

Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice.

“The diverse genetic backgrounds of lupus-prone murine models, which produce both quantitative and qualitative differences in disease expression, may be a valuable resource for studying the influence of environmental exposure on autoimmune disease in sensitive populations. We tested this premise by exposing autoimmune-prone BXSB and the nonautoimmune C57BL/6 mice to the heavy metal mercury. Although both strains express a nonsusceptible H-2 haplotype, exposure to mercury accelerated systemic autoimmunity in both male and female BXSB mice, whereas the C57BL/6 mice were resistant. The subclasses of antichromatin antibodies elicited in BXSB mice by mercury exposure were more consistent with the predominant Th1-type response of idiopathic disease than with the Th2-type response found in mercury-induced autoimmunity (HgIA). The appearance and magnitude of both humoral and cellular features of systemic autoimmunity correlated with the mercury dose. Furthermore, environmentally relevant tissue levels of mercury were associated with exacerbated systemic autoimmunity. These studies demonstrate that xenobiotic exposure can accelerate spontaneous systemic autoimmunity, and they support the possibility that low-level xenobiotic exposure enhances susceptibility to systemic autoimmunity in genetically susceptible individuals.”

The glutathione peroxidases.

“There are several proteins in mammalian cells that can metabolize hydrogen peroxide and lipid hydroperoxides. These proteins include four selenium-containing glutathione peroxidases that are found in different cell fractions and tissues of the body. This review considers the structure and distribution of the selenoperoxidases and how this relates to their biological function. The functions of the selenoperoxidases were originally studied in systems where their activity was manipulated by changing dietary selenium levels. More recently, molecular techniques have allowed overexpression of selenoperoxidases in cell lines and animals. Additionally, cellular glutathione peroxidase knockout mice have been used to investigate the functions of this protein. From this work it is clear that the selenoperoxidases are involved in cell antioxidant systems. However, they also have more subtle functions in ensuring the regulation and formation of arachadonic acid metabolites that are derived from hydroperoxide intermediates. The range of biological processes, which are potentially dependent on optimal selenoperoxidase activity in mammals, emphasises the importance of achieving adequate selenium intake in the diet.”

By |2018-03-08T23:39:16+00:00January 1st, 2001|Other|

Inhibition of the human erythrocytic glutathione-S-transferase T1 (GST T1) by thimerosal.

“We have investigated the interaction of thimerosal, a widely used antiseptic and preservative, with the human erythrocytic GST T1 (glutathione-S-transferase T1). This detoxifying enzyme is expressed in the erythrocytes of solely the human species and it displays a genetic polymorphism. Due to this polymorphism about 25% of the individuals of the caucasian population lack this activity (“non-conjugators”), while 75% show it (“conjugators”) (Hallier, E., et al., 1993). Using our newly developed HPLC-fluorescence detection assay (Müller, M., et al., 2001) we have profiled the kinetics of enzyme inhibition in erythrocyte lysates of two individuals previously identified as “normal conjugator” (medium enzyme activity) and “super-conjugator” (very high activity). For the normal conjugator we have determined a 2.77 mM thimerosal concentration to inhibit 50% of the GST T1 activity. In the case of the super-conjugator a 2.3 mM thimerosal concentration causes a 50% inhibition of the enzyme activity. For both phenotypes a 14.8 mM thimerosal concentration results in residual enzyme activities equal to those typically detected in non-conjugator lysates. Thus, sufficiently high doses of thimerosal may be able to change the phenotypic status of an individual–at least in vitro–by inhibition of the GST T1 enzyme.”

By |2018-06-28T19:28:37+00:00January 1st, 2001|Mercury|
Go to Top