iaomtlibrary

About Ekstrand J, Bjorkman L, Edlund C, Sandborgh-Englund G.

This author has not yet filled in any details.
So far Ekstrand J, Bjorkman L, Edlund C, Sandborgh-Englund G. has created 1044 blog entries.

Toxicological aspects on the release and systemic uptake of mercury from dental amalgam.

“This paper summarizes some recent reports on mercury release from amalgam fillings and resulting concentrations in biological fluids, development of antibiotic resistance, and kidney function. In a series of studies of subjects with amalgam fillings, mercury (Hg) levels were followed in saliva, feces, blood, plasma, and urine before and until 60 d after removal of all of the fillings. The Hg concentrations in saliva remained elevated for at least 1 wk, suggesting that dissolved Hg vapor is not the major source of mercury in mixed saliva. An absorption phase of Hg was seen in plasma during 24 h after amalgam removal. After 60 d the plasma Hg concentration was reduced to 40%, of the baseline level. The decrease per amalgam surface was 0.11 nmol/l (range 0.02 0.40). The Hg level in feces increased two orders of magnitude two days after amalgam removal. At day 60, the median Hg concentration was still slightly higher than the median value of the amalgam free control group. The resistance patterns of the oral and intestinal microflora in these subjects were also studied. In the intestinal microflora, the relative amount of intestinal microorganisms resistant to 50 microM HgCl2 peaked 7 d after removal of the amalgam fillings, with a median value per sample of 6.1%, compared to 1.3% in samples collected prior to the Hg exposure. However, no statistical differences in the resistance pattern of the oral microflora were detected between the control and the experimental groups. A number of sensitive kidney function parameters were measured 1 wk before and 1, 2, and 60 d after amalgam removal. No effects on the various kidney parameters studied were recorded. According to the conclusions of independent evaluations from different state health agencies, the release of mercury from dental amalgam does not present any non-acceptable risk to the general population.”

By |2018-04-18T19:10:42+00:00January 1st, 1998|Mercury|

Environmental aspects of dental filling materials.

“In recent years, the possible environmental impact caused by certain routines in dental practice has attracted attention among regulators. As part of point source reduction strategies, the discharge of mercury/amalgam-contaminated wastes has been regulated in a number of countries, even though it has been documented that by adopting appropriate mercury hygiene measures, including installation of amalgam-separating devices, the environmental impact of amalgam use in dentistry is minimal. There are, so far, no data indicating the environmental impact of methacrylate-based dental filling materials. As to the occupational environment, recent reports have stated that when normal occupational recommendations for proper mercury hygiene routines are followed (e.g., water spray coolant and high vacuum suction during removal of amalgam restorations), no occupational health risk can be assumed. An increasing number of reports on occupational allergic reactions to components of polymer-based dental filling materials call for attention to the sensitizing potential of certain ingredients in these products.”

By |2018-03-09T05:43:12+00:00January 1st, 1998|Mercury|

Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population.

“Minute amounts of mercury vapor are released from dental amalgams. Since mercury vapor is known to be associated with adverse health effects from occupationally exposed persons, questions regarding the margin of safety for exposure to mercury vapor in the general population continue to be raised. To address this issue, one needs information regarding exposure to mercury vapor from dental amalgam fillings and its possible consequences for health in the general population. The NIDR Amalgam Study is designed to obtain precise information on amalgam exposure and health outcomes for a non-occupationally-exposed population of US adults. One hypothesis was that in a generally healthy population a significant association between amalgam exposure and Hg levels in urine and/or whole blood could be detected. The cohort investigated was an adult military population of 1127 healthy males. Their average age was 52.8 years, and their ages varied from 40 to 78 years. Ninety-five percent of the study participants were white males, and slightly over 50% had some college education. Five percent were edentulous. The dentate participants, on average, had 25 natural teeth, 36.9 decayed or filled surfaces (DFS), and 19.9 surfaces exposed to amalgam, with amalgam exposure varying from 0 to 66 surfaces. Their average total and inorganic urinary mercury concentrations were 3.09 microg/L and 2.88 microg/L. The average whole-blood total and inorganic mercury concentrations were 2.55 microg/L and 0.54 microg/L. Significant correlations were detected between amalgam exposure and the total (r = 0.34, p < 0.001) and inorganic 0.34 (r = 0.34, p < 0.001) urinary mercury concentrations on the original scale. Stronger correlations were found for total (r = 0.44, p < 0.001) and inorganic (r = 0.41, p < 0.001) urinary Hg on the log scale, as well as for creatinine-corrected total (r = 0.43, p < 0.001) and inorganic (r = 0.43, p < 0.001) urine concentrations. In whole blood, statistically significant, but biologically weak, correlations were detected for total (r = 0.09, p = 0.005) and inorganic (r = 0.15, p < 0.001) Hg concentrations, respectively. Based on these cross-sectional data, it is estimated that, on average, each ten-surface increase in amalgam exposure is associated with an increase of 1 microg/L mercury in urine concentration.”

By |2018-06-25T19:21:22+00:00January 1st, 1998|Mercury|

Wingspread Conference on the Precautionary Principle.

“Last weekend at an historic gathering at Wingspread, headquarters of the Johnson Foundation, scientists, philosophers, lawyers and environmental activists, reached agreement on the necessity of the Precautionary Principle in public health and environmental decision-making. The key element of the principle is that it incites us to take anticipatory action in the absence of scientific certainty. At the conclusion of the three-day conference, the diverse group issued a statement calling for government, corporations, communities and scientists to implement the “precautionary principle” in making decisions. “

By |2018-07-05T22:45:02+00:00January 1st, 1998|Mercury|

Amalgam vs. composite resin: 1998.

“Class II resin restorations have been evolving in American dentistry for 30 years, but the concept has had significant difficulty being accepted because of stigma attached to early generations of composites. Currently available composite resins for posterior tooth restorations have physical characteristics justifying their use. Techniques for Class II resin placement have improved significantly, and mastery of them is within the ability of both dentists and dental students. Although composite resin materials and techniques present clinical challenges, so do amalgam materials and techniques. It is time to accept Class II resin restorations, improve dentist and student education about their use, increase acceptance by third-party organizations and various approving groups, and bring this concept into the mainstream of U.S. dentistry.”

By |2018-04-10T21:49:10+00:00January 1st, 1998|Mercury|

Activation of the immune system and systemic immune-complex deposits in Brown Norway rats with dental amalgam restorations.

“Dental amalgam restorations are a significant source of mercury exposure in the human population, but their potential to cause systemic health effects is highly disputed. We examined effects on the immune system by giving genetically mercury-susceptible Brown Norway (BN) rats and mercury-resistant Lewis (LE) rats silver amalgam restorations in 4 molars of the upper jaw, causing a body burden similar to that described in human amalgam-bearers (from 250 to 375 mg amalgam/kg body weight). BN rats with amalgam restorations, compared with control rats given composite resinous restorations, developed a rapid activation of the immune system, with a maximum 12-fold increase of the plasma IgE concentration after 3 wks (p < 0.001; Mann-Whitney’s test). LE rats receiving amalgam restorations showed no significant increase of plasma IgE (p > 0.05). After 12 wks, BN rats with amalgam restorations showed significantly increased (p < 0.05) titers of immune-complex (IC) deposits in the renal glomeruli and in the vessel walls of internal organs. These rats also showed a significant (p < 0.05), from six- to 130-fold, increase in tissue mercury concentration in the concentration order kidney > spleen > cerebrum occipital lobe > cerebellum > liver > thymus, and the tissue silver concentration was significantly (p < 0.05) increased from three- to 11-fold. Amalgam-implanted BN rats showed a significant (p < 0.05) increase in copper concentration in the kidney and spleen, and in kidney selenium concentration. We conclude that dental amalgam restorations release substantial amounts of their elements, which accumulate in the organs and which, in genetically susceptible rats, give rise to activation of the immune system and systemic IC deposits.”

By |2018-06-04T22:52:05+00:00January 1st, 1998|Mercury|

Mercury in biological fluids after amalgam removal.

“Dental amalgam is the major source of inorganic mercury (Hg) exposure in the general population. The objective of the present study was to obtain data on changes in Hg levels in blood, plasma, and urine following removal of all amalgam fillings during one dental session in 12 healthy subjects. The mean number of amalgam surfaces was 18 (range, 13 to 34). Frequent blood sampling and 24-hour urine collections were performed up to 115 days after amalgam removal, and in eight subjects additional samples of plasma and urine were collected up to three years after amalgam removal. A transient increase of Hg concentrations in blood and plasma was observed within 48 hours after amalgam removal. In plasma, the peak concentrations significantly exceeded the pre-removal plasma Hg levels by, on average, 32% (1.3 nmol/L; range, 0.1 to 4.2). No increase in the urinary Hg excretion rate was apparent after amalgam removal. An exponential decline of Hg was seen in all media. Sixty days after the amalgam removal, the Hg levels in blood, plasma, and urine had declined to approximately 60% of the pre-removal levels. In seven subjects, who were followed for up to three years, the half-lives of Hg in plasma and urine were calculated. In plasma, a bi-exponential model was applied, and the half-life was estimated at median 88 days (range, 21 to 121). The kinetics of Hg in urine (nmol/24 hrs) fit a mono-exponential model with a median half-life of 46 days (range, 35 to 67). It is concluded that the process of removing amalgam fillings can have a considerable impact on Hg levels in biological fluids. After removal, there was a considerable decline in the Hg levels of blood, plasma, and urine, which slowly approached those of subjects without any history of amalgam fillings.”

Neurobehavioral effects from exposure to dental amalgam Hg(o): new distinctions between recent exposure and Hg body burden.

“Potential toxicity from exposure to mercury vapor (Hg(o)) from dental amalgam fillings is the subject of current public health debate in many countries. We evaluated potential central nervous system (CNS) toxicity associated with handling Hg-containing amalgam materials among dental personnel with very low levels of Hg(o) exposure (i.e., urinary Hg <4 microg/l), applying a neurobehavioral test battery to evaluate CNS functions in relation to both recent exposure and Hg body burden. New distinctions between subtle preclinical effects on symptoms, mood, motor function, and cognition were found associated with Hg body burden as compared with those associated with recent exposure. The pattern of results, comparable to findings previously reported among subjects with urinary Hg >50 microg/l, presents convincing new evidence of adverse behavioral effects associated with low Hg(o) exposures within the range of that received by the general population.”

Go to Top