Author: Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B.
Source: The European Journal of Orthodontics.
Year: 2006
Comment:
Abstract / Excerpt:
The aim of this investigation was to determine the influence of fluoride in certain mouthwashes on the risk of corrosion through galvanic coupling of orthodontic wires and brackets. Two titanium alloy wires, nickel-titanium (NiTi) and copper-nickel-titanium (CuNiTi), and the three most commonly used brackets, titanium (Ti), iron-chromium-nickel (FeCrNi) and cobalt-chromium (CoCr), were tested in a reference solution of Fusayama-Meyer artificial saliva and in two commercially available fluoride (250 ppm) mouthwashes, Elmex and Meridol. Corrosion resistance was assessed by inductively coupled plasma-atomic emission spectrometry (ICP-MS), analysis of released metal ions, and a scanning electron microscope (SEM) study of the metal surfaces after immersion of different wire-bracket pairs in the test solutions. The study was completed by an electrochemical analysis. Meridol mouthwash, which contains stannous fluoride, was the solution in which the NiTi wires coupled with the different brackets showed the highest corrosion risk, while in Elmex mouthwash, which contains sodium fluoride, the CuNiTi wires presented the highest corrosion risk. Such corrosion has two consequences: deterioration in mechanical performance of the wire-bracket system, which would negatively affect the final aesthetic result, and the risk of local allergic reactions caused by released Ni ions. The results suggest that mouthwashes should be prescribed according to the orthodontic materials used. A new type of mouthwash for use during orthodontic therapy could be an interesting development in this field.
Citation: Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. The European Journal of Orthodontics. 2006; 28(3):298-304.