Author: Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM.

Source: J Neural Transm.

Year: 1998

Comment:

This study finds a correlation between Alzheimer's disease and mercury levels but does not find a link with dental amalgams

Abstract / Excerpt:

“Alzheimer’s disease (AD) is a common neurodegenerative disorder that leads to dementia and death. In addition to several genetic parameters, various environmental factors may influence the risk of getting AD. In order to test whether blood levels of the heavy metal mercury are increased in AD, we measured blood mercury concentrations in AD patients (n = 33), and compared them to age-matched control patients with major depression (MD) (n = 45), as well as to an additional control group of patients with various non-psychiatric disorders (n = 65). Blood mercury levels were more than two-fold higher in AD patients as compared to both control groups (p = 0.0005, and p = 0.0000, respectively). In early onset AD patients (n = 13), blood mercury levels were almost three-fold higher as compared to controls (p = 0.0002, and p = 0.0000, respectively). These increases were unrelated to the patients’ dental status. Linear regression analysis of blood mercury concentrations and CSF levels of amyloid beta-peptide (A beta) revealed a significant correlation of these measures in AD patients (n = 15, r = 0.7440, p = 0.0015, Pearson type of correlation). These results demonstrate elevated blood levels of mercury in AD, and they suggest that this increase of mercury levels is associated with high CSF levels of A beta, whereas tau levels were unrelated. Possible explanations of increased blood mercury levels in AD include yet unidentified environmental sources or release from brain tissue with the advance in neuronal death.”

Citation:

Hock C, Drasch G, Golombowski S, Müller-Spahn F, Willershausen-Zönnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM. Increased blood mercury levels in patients with Alzheimer's disease. J Neural Transm. 1998; 105(1):59-68.