Author: Akerstrom M, Barregard L, Lundh T, Sallsten G.
Source: Toxicology and Applied Pharmacology.
Year: 2017
Comment:
Abstract / Excerpt:
Methods
Kidney cortex biopsies and urine and blood samples were collected from 109 living kidney donors. Total Hg concentrations were determined and the relationships between K-Hg, U-Hg, P-Hg, and B-Hg were investigated in regression models. The half-time of K-Hg was estimated from the elimination constant.
Results
There were strong associations between K-Hg and all measures of U-Hg and P-Hg (rp = 0.65–0.84, p < 0.001), while the association with B-Hg was weaker (rp = 0.29, p = 0.002). Mean ratios between K-Hg (in μg/g) and U-Hg/24h (in μg) and B-Hg (in μg/L) were 0.22 and 0.19 respectively. Estimates of the biological half-time varied between 30 and 92 days, with significantly slower elimination in women. Adjusting overnight urine samples for dilution using urinary creatinine resulted in less bias in relation to K-Hg or U-Hg/24h, compared with other adjustment techniques.
Conclusions
The relationship between K-Hg and U-Hg is approximately linear. K-Hg can be estimated using U-Hg and gender. Women have longer half-time of Hg in kidney compared to men. Adjusting overnight urine samples for creatinine concentration resulted in less bias.”
Citation: Akerstrom M, Barregard L, Lundh T, Sallsten G. Relationship between mercury in kidney, blood, and urine in environmentally exposed individuals, and implications for biomonitoring. Toxicology and Applied Pharmacology. 2017; 320:17-25.