adam

About Rooney JP, Woods NF, Martin MD, Woods JS.

This author has not yet filled in any details.
So far Rooney JP, Woods NF, Martin MD, Woods JS. has created 994 blog entries.

Genetic polymorphisms of GRIN2A and GRIN2B modify the neurobehavioral effects of low-level lead exposure in children

Lead (Pb) is neurotoxic and children are highly susceptible to this effect, particularly within the context of continuous low-level Pb exposure. A current major challenge is identification of children who may be uniquely susceptible to Pb toxicity because of genetic predisposition. Learning and memory are among the neurobehavioral processes that are most notably affected by Pb exposure, and modification of N-methyl-D-aspartate receptors (NMDAR) that regulate these processes during development are postulated to underlie these adverse effects of Pb. We examined the hypothesis that polymorphic variants of genes encoding glutamate receptor, ionotropic, NMDAR subunits 2A and 2B, GRIN2A and GRIN2B, exacerbate the adverse effects of Pb exposure on these processes in children. Participants were subjects who participated as children in the Casa Pia Dental Amalgam Clinical Trial and for whom baseline blood Pb concentrations and annual neurobehavioral test results over the 7 year course of the clinical trial were available. Genotyping assays were performed for variants of GRIN2A (rs727605 and rs1070503) and GRIN2B (rs7301328 and rs1806201) on biological samples acquired from 330 of the original 507 trial participants. Regression modeling strategies were employed to evaluate the association between genotype status, Pb exposure, and neurobehavioral test outcomes. Numerous significant adverse interaction effects between variants of both GRIN2A and GRIN2B, individually and in combination, and Pb exposure were observed particularly among boys, preferentially within the domains of Learning & Memory and Executive Function. In contrast, very few interaction effects were observed among similarly genotyped girls with comparable Pb exposure. These findings support observations of an essential role of GRIN2A and GRIN2B on developmental processes underlying learning and memory as well as other neurological functions in children and demonstrate, further, modification of Pb effects on these processes by specific variants of both GRIN2A and GRIN2B genes. These observations highlight the importance of genetic factors in defining susceptibility to Pb neurotoxicity and may have important public health implications for future strategies aimed at protecting children and adolescents from potential health risks associated with low-level Pb exposure.

By |2018-08-10T23:38:20+00:00January 1st, 2018|Other|

Fluoride mouth rinses for preventing dental caries in children and adolescents.

Most of the studies included in this systematic review are more than 20 years old. As such, the reporting of the trials often lacked meth-odological detail necessary to produce high quality recommendations.  When new trials on fluoride mouthrinses for caries control are conducted, these should focus on direct comparisons between dif-ferent fluoride mouthrinse features or comparisons of fluoride rinses against other preventive strategies, such as tooth sealants. Since there is also little evidence related to adverse effects of flu-oride mouthrinses, additional studies to quantify and describe tooth staining, mucosal irritation, and acute toxicity are warranted.

By |2018-07-18T23:32:41+00:00January 1st, 2018|Fluoride|

Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans.

Mercury is a toxic metal that can be disseminated into the environment from both natural and anthropogenic sources. Human exposure to the metal stems mainly from food, and more particularly from the consumption of fish and other seafoods. Examining dietary exposure and measuring mercury levels in body tissues are two ways of estimating exposure to mercury. In this study, we utilized a modelling system consisting of three linear toxicokinetic models for describing the fate of methyl mercury, inorganic mercury, and metallic mercury in the body, in order to estimate daily intake of mercury as measured through total mercury concentrations in the blood. We then compared the results stemming from our modelling system to those of the detailed semi-quantitative food frequency questionnaire (FFQ) of the Norwegian Fish and Game (NFG) Study, a project that focused on dietary mercury exposure. The results indicate that toxicokinetic modelling based on blood levels gave higher daily intake values of mercury compared to those of the FFQ. Furthermore, the former had a wider range of estimates than the latter. The properties of the toxicokinetic model or limitations in the dietary exposure assessment could be posited as reasons for the differences between the respective methods. Moreover, the results may have been influenced by sources of mercury exposure that cannot be described as dietary, such as amalgam fillings.

KEYWORDS:

Clinical antibacterial effectiveness and biocompatibility of gaseous ozone after incomplete caries removal.

OBJECTIVES:
To evaluate local effect of gaseous ozone on bacteria in deep carious lesions after incomplete caries removal, using chlorhexidine as control, and to investigate its effect on pulp vascular endothelial growth factor (VEGF), neuronal nitric oxide synthase (nNOS), and superoxide dismutase (SOD).

MATERIALS AND METHODS:
Antibacterial effect was evaluated in 48 teeth with diagnosed deep carious lesion. After incomplete caries removal, teeth were randomly allocated into two groups regarding the cavity disinfectant used: ozone (open system) or 2% chlorhexidine. Dentin samples were analyzed for the presence of total bacteria and Lactobacillus spp. by real-time quantitative polymerase chain reaction. For evaluation of ozone effect on dental pulp, 38 intact permanent teeth indicated for pulp removal/tooth extraction were included. After cavity preparation, teeth were randomly allocated into two groups: ozone group and control group. VEGF/nNOS level and SOD activity in dental pulp were determined by enzyme-linked immunosorbent assay and spectrophotometric method, respectively.

RESULTS:
Ozone application decreased number of total bacteria (p = 0.001) and Lactobacillus spp. (p < 0.001), similarly to chlorhexidine. The VEGF (p < 0.001) and nNOS (p = 0.012) levels in dental pulp after ozone application were higher, while SOD activity was lower (p = 0.001) comparing to those in control pulp.

CONCLUSIONS:
Antibacterial effect of ozone on residual bacteria after incomplete caries removal was similar to that of 2% chlorhexidine. Effect of ozone on pulp VEGF, nNOS, and SOD indicated its biocompatibility.

CLINICAL RELEVANCE:
Ozone appears as effective and biocompatible cavity disinfectant in treatment of deep carious lesions by incomplete caries removal technique.

By |2018-08-08T23:26:14+00:00January 1st, 2018|Other|

Mercury-induced oxidative stress may adversely affect pregnancy outcome among dental staff: a cohort study.

CONCLUSION: Pregnant dental staff suffered higher odds of developing spontaneous abortion and pre-eclampsia and giving birth to babies smaller for gestational age. This may be linked to oxidative stress induced by exposure to mercury.

By |2019-04-18T21:21:47+00:00January 1st, 2018|Mercury|

Genotoxic effects of silver amalgam and composite restorations: Micronuclei-Based cohort and case–control study in oral exfoliated cells.

AIMS:
The aim of this study is to evaluate the genotoxic effects of silver amalgam and composite restorations by measuring the mean number of MN in oral exfoliated cells.

MATERIALS AND METHODS:
The present study was a prospective cohort study which includes a study group consisting of 110 participants. The study sample was equally divided into 55 participants requiring only amalgam restoration and 55 participants requiring only composite restoration in any permanent molar teeth. The same participants before the restoration formed the control group. Smears were obtained from each patient before and 10 days after restoration and were stained with DNA-specific Feulgen stain. The number of cells containing MN out of 500 cells were counted and recorded. After the evaluation of the slides, the results were compiled and subjected to statistical analysis.

RESULTS:
There was a statistically significant (P < 0.01) variation in the mean number of MN after the restoration in both amalgam (5.41 ± 1.25) and composite (2.83 ± 0.85) restorations when compared to before the restoration. However, the mean number of MN in composite restoration was significantly less when compared to amalgam restoration. There was also a statistically significant difference in the mean number of MN in subjects with single restoration when compared with multiple restorations in both amalgam and composite restorations.

CONCLUSIONS:
The observations from the present study showed the genotoxic effect of amalgam and composite restorations on the oral cavity. However, composite restorations were least cytotoxic when compared to amalgam restoration. Future research and technical advancements are needed for developing safer materials for use in humans.

By |2018-08-09T23:21:06+00:00January 1st, 2018|Mercury|

Composition Analysis and Feature Selection of the Oral Microbiota Associated with Periodontal Disease

Periodontitis is an inflammatory disease involving complex interactions between oral microorganisms and the host immune response. Understanding the structure of the microbiota community associated with periodontitis is essential for improving classifications and diagnoses of various types of periodontal diseases and will facilitate clinical decision-making. In this study, we used a 16S rRNA metagenomics approach to investigate and compare the compositions of the microbiota communities from 76 subgingival plagues samples, including 26 from healthy individuals and 50 from patients with periodontitis. Furthermore, we propose a novel feature selection algorithm for selecting features with more information from many variables with a combination of these features and machine learning methods were used to construct prediction models for predicting the health status of patients with periodontal disease. We identified a total of 12 phyla, 124 genera, and 355 species and observed differences between health- and periodontitis-associated bacterial communities at all phylogenetic levels. We discovered that the genera Porphyromonas, Treponema, Tannerella, Filifactor, and Aggregatibacter were more abundant in patients with periodontal disease, whereas Streptococcus, Haemophilus, Capnocytophaga, Gemella, Campylobacter, and Granulicatella were found at higher levels in healthy controls. Using our feature selection algorithm, random forests performed better in terms of predictive power than other methods and consumed the least amount of computational time.

Mercury exposure and health impacts in dental personnel.

Based on toxicological, clinical, and epidemiological knowledge, the present paper reviews the status regarding possible deleterious health effects from occupational exposure to metallic mercury (Hg) in dental practice. Symptoms from the central nervous system are among the health problems that most often are attributed to Hg exposure in dentists and dental nurses working with amalgam. Uncharacteristic symptoms of chronic low-level Hg vapor exposure including weakness, fatigue, and anorexia have been observed in numerous studies of dental personnel. It is crucial to protect both human health and the environment against negative effects of Hg. In line with this, the use of dental amalgam in industrial countries is about to be phased out. In Norway and Sweden, the use of the filling material is banned.

By |2018-08-03T23:20:22+00:00January 1st, 2018|Mercury|

Immunoexcitotoxicity as the central mechanism of etiopathology and treatment of autism spectrum disorders: A possible role of fluoride and aluminum.

Our review suggests that most autism spectrum disorder (ASD) risk factors are connected, either directly or indirectly, to immunoexcitotoxicity. Chronic brain inflammation is known to enhance the sensitivity of glutamate receptors and interfere with glutamate removal from the extraneuronal space, where it can trigger excitotoxicity over a prolonged period. Neuroscience studies have clearly shown that sequential systemic immune stimulation can activate the brain’s immune system, microglia, and astrocytes, and that with initial immune stimulation, there occurs CNS microglial priming. Children are exposed to such sequential immune stimulation via a growing number of environmental excitotoxins, vaccines, and persistent viral infections. We demonstrate that fluoride and aluminum (Al3+) can exacerbate the pathological problems by worsening excitotoxicity and inflammation. While Al3+ appears among the key suspicious factors of ASD, fluoride is rarely recognized as a causative culprit. A long-term burden of these ubiquitous toxins has several health effects with a striking resemblance to the symptoms of ASD. In addition, their synergistic action in molecules of aluminofluoride complexes can affect cell signaling, neurodevelopment, and CNS functions at several times lower concentrations than either Al3+ or fluoride acting alone. Our review opens the door to a number of new treatment modes that naturally reduce excitotoxicity and microglial priming.

By |2019-06-05T22:57:20+00:00January 1st, 2018|Other|

Reconsideration of the immunotherapeutic pediatric safe dose levels of aluminum.

FDA regulations require safety testing of constituent ingredients in drugs (21 CFR 610.15). With the exception of extraneous proteins, no component safety testing is required for vaccines or vaccine schedules. The dosing of aluminum in vaccines is based on the production of antibody titers, not safety science. Here we estimate a Pediatric Dose Limit that considers body weight. We identify several serious historical missteps in past analyses of provisional safe levels of aluminum in vaccines, and provide updates relevant to infant aluminum exposure in the pediatric schedule considering pediatric body weight. When aluminum doses are estimated from Federal Regulatory Code given body weight, exposure from the current vaccine schedule are found to exceed our estimate of a weight-corrected Pediatric Dose Limit. Our calculations show that the levels of aluminum suggested by the currently used limits place infants at risk of acute, repeated, and possibly chronic exposures of toxic levels of aluminum in modern vaccine schedules. Individual adult exposures are on par with Provisional Tolerable Weekly Intake “limits”, but some individuals may be aluminum intolerant due to genetics or previous exposures. Vaccination in neonates and low birth-weight infants must be re-assessed; other implications for the use of aluminum-containing vaccines, and additional limitations in our understanding of neurotoxicity and safety levels of aluminum in biologics are discussed.

By |2018-08-09T23:02:24+00:00January 1st, 2018|Other|
Go to Top