Ozone

Antimicrobial effect of ozonated water on bacteria invading dentinal tubules.

Ozone is known to act as a strong antimicrobial agent against bacteria, fungi, and viruses. In the present study, we examined the effect of ozonated water against Enterococcus faecalis and Streptcoccus mutans infections in vitro in bovine dentin. After irrigation with ozonated water, the viability of E. faecalis and S. mutans invading dentinal tubules significantly decreased. Notably, when the specimen was irrigated with sonication, ozonated water had nearly the same antimicrobial activity as 2.5% sodium hypochlorite (NaOCl). We also compared the cytotoxicity against L-929 mouse fibroblasts between ozonated water and NaOCl. The metabolic activity of fibroblasts was high when the cells were treated with ozonated water, whereas that of fibroblasts significantly decreased when the cells were treated with 2.5% NaOCl. These results suggest that ozonated water application may be useful for endodontic therapy.

Critical review and research needs of ozone applications related to virus inactivation: potential implications for SARS-CoV-2.

Ozone disinfection has demonstrated high efficacy against enveloped and non-enveloped viruses, including viruses similar in morphology to SARS CoV-2. Due to this efficacy, numerous gaseous and aqueous phase ozone applications have emerged to potentially inhibit virus persistence in aerosols, surfaces, and water. This review identifies the exposure requirements for virus inactivation and important safety considerations for applications within the built environment (i.e. occupied/unoccupied spaces, air/water/wastewater treatment) and healthcare settings (i.e. ozone therapy, dentistry, handwashing, treatment of personal protection equipment (PPE)). Current research needs are presented to advance the utilization of ozone as a mitigation strategy.

Antimicrobial effect of ozonated water on bacteria invading dentinal tubules.

Removal of dental plaque and local application of local chemical adjuncts, such as chlorhexidine (CHX), have been used to control and treat peri-implant disease. However, these methods can damage the surface properties of the implants or promote bacterial resistance. The application of ozone as an adjunctive treatment represents a new approach in the management of peri-implantitis. Thus, the purpose of this study was to evaluate the antimicrobial effect of ozonized physiological saline solution in different concentrations against oral biofilms developed on titanium surface.

Antibiofilm effect of ozonized physiological saline solution on peri‐implant–related biofilm

Removal of dental plaque and local application of local chemical adjuncts, such as chlorhexidine (CHX), have been used to control and treat peri-implant disease. However, these methods can damage the surface properties of the implants or promote bacterial resistance. The application of ozone as an adjunctive treatment represents a new approach in the management of peri-implantitis. Thus, the purpose of this study was to evaluate the antimicrobial effect of ozonized physiological saline solution in different concentrations against oral biofilms developed on titanium surface.

Efficacy of ozone on survival and permeability of oral microorganisms.

In the present study, we examined the effect of ozonated water on oral microorganisms and dental plaque. Almost no microorganisms were detected after being treated with ozonated water (4 mg/l) for 10 s. To estimate the ozonated water-treated Streptococcus mutans, bacterial cells were stained with LIVE/DEAD BacLight Bacterial Viability Kit. Fluorescence microscopic analysis revealed that S. mutans cells were killed instantaneously in ozonated water. Some breakage of ozonated water-treated S. mutans was found by electron microscopy. When the experimental dental plaque was exposed to ozonated water, the number of viable S. mutans remarkably decreased. Ozonated water strongly inhibited the accumulation of experimental dental plaque in vitro. After the dental plaque samples from human subjects were exposed to ozonated water in vitro, almost no viable bacterial cells were detected. These results suggest that ozonated water should be useful in reducing the infections caused by oral microorganisms in dental plaque.

Efficacy of ozonized water for the treatment of erosive oral lichen planus: a randomized controlled study.

Background: Management of erosive Oral Lichen Planus (eOLP) is challenging. Currently, topical corticosteroids are widely used as first-line therapy, but they might be associated with side-effects and incomplete clinical response. Among non-pharmacological strategies, ozone at low medical concentration has proven to induce a mild activation of protective anti-oxidant pathways, thus exerting therapeutic effects in many inflammatory diseases. The aim of this randomized controlled study was to investigate the effectiveness of ozonized water in association with conventional topical corticosteroids for the treatment of eOLP.

Material and methods: Fifty-one patients were included in the study and randomized into 2 groups: study group (n=26) included patients receiving ozonized water treatment; control group (n=25) included patients receiving placebo treatment (i.e. double-distilled water). Treatment protocol consisted of 1-minute oral rinses, repeated for 4 times, twice a week for 4 weeks. All patients received conventional corticosteroid topical therapy (betamethasone soluble tablets, 2 rinses/day for 4 weeks). Assessment of size of lesions, sign and pain scores was performed before treatment, after 2 weeks of treatment (T1) and at the end of 4-week treatment (T2). Efficacy Index (EI) of treatment, candidiasis and relapse rates were also recorded.

Results: All patients experienced significant improvement of sign and pain scores with a higher rate of improvement in ozone-treated group (T1 improvement rates: Thongprasom 92.2% vs 28%; VAS pain 76.9% vs 32%; p<0.05). Pain and size reduction were significantly higher in ozone-treated group both at T1 and T2 (p<0.05). Ozone-treated group showed a higher EI at every time point (T0-T2: 72.77% vs 37.66%, p<0.01). Candidiasis (32% vs 11.5%) and relapse (40% vs 34.6%) rates were higher in control group, however the differences were not statistically significant.

Conclusions: Within the limitations of this study, ozonized water seems to be effective as an adjunct therapy, in combination with topical corticosteroids, for the treatment of eOLP.

By |2022-10-27T23:03:05+00:00January 1st, 2022|Ozone|

Clinical utility of ozone therapy in dental and oral medicine.

Ozone is a highly reactive compound composed of three oxygen atoms that acts as an oxidant and oxidizer. It exists at the ground level as an air pollutant and a constituent of urban smog, as well as in the Earth’s upper atmosphere as a protective layer from ultraviolet rays. Healthy cells contain antioxidants such as vitamins C and E to protect against ozone oxidization. However, pathogens such as bacteria contain very trace amounts of antioxidants in their membranes, which make them susceptible to ozone and destroy the cell membrane. This review explores the history, composition, and use of ozone worldwide in dentistry. Ozone therapy has thus far been utilized with wound healing, dental caries, oral lichen planus, gingivitis and periodontitis, halitosis, osteonecrosis of the jaw, post-surgical pain, plaque and biofilms, root canals, dentin hypersensitivity, temporomandibular joint disorders, and teeth whitening. The utility of ozone will undoubtedly grow if studies continue to show positive outcomes in an increasing number of dental conditions.

Go to Top